پشتیبانی آنلاین روبونیچ

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

چگونه متخصص علم داده شویم؟

چگونه متخصص علم داده شویم؟

هنگامی که از متخصص علم داده صحبت می‌کنیم، منظورِ ما تبدیل شدن به شخصی است که بتواند از میان انبوهی از داده‌ها، الگوها و به دنبال آن، ارزش‌های نهفته در بین آن‌ها را کشف کند. کشف این الگوهاست که می‌تواند ارزشِ افزوده‌ی یک کسب‌و‌کار را بالا و بالاتر ببرد.

اما برای تبدیل شدن از یک فردِ غیر متخصص به یک متخصص در حوزه‌ی داده کاوی مراحلی لازم است. طبیعی است که مراحلی که در این مقاله نوشته می‌شوند تنها راهکار موجود نیستند، با این همه، به نظر می‌رسد که یک متخصص علم داده بایستی این ۸ قدم‌ را دنبال کند.

چگونه متخصص علم داده شویم؟

مثالی از کاربرد علم داده

فرض کنید شرکتی مانند آمازون (یا نمونه‌های مشابه دیگر) که در واقع یک خرده‌فروشی و واسط فروش به صورت آنلاین هستند با استفاده از داده‌های خود، پیش‌بینی کنند که در سه ماه آینده کدام محصولات و هر کدام به چه مقدار، فروش خواهند رفت. طبیعی است که، این پیش‌بینی می‌تواند به مقدار زیادی به رشد این کسب‌و‌کار و افزایش سود آن منجر شود.

همین پیش‌بینیِ ساده که در بالا گفته شد، می‌تواند به تنظیم انبارهای فروش در مناطق مختلف کمک کرده و هزینه‌های انبارداری و لجستیک را به میزان قابل توجهی کاهش دهد. مثلا آمازون پیش‌بینی می‌کند که در آغاز فصل تابستان، در منطقه‌ی خاورمیانه، فروشِ نوعی لپ‌تاپ افزایش پیدا می‌کند. این شرکت می‌تواند توسط کشتی‌های تجاری مختلف، آن نوع لپ‌تاپ را قبل از ایجاد نقطه‌ی پیکِ تقاضاها، به انبار خود در خاورمیانه، انتقال دهد و در هنگام سفارش، به سرعت محصول را تحویل مشتری نماید. این کار باعث افزایش سرعت تحویل و رضایت مشتری و همچنین کاهش هزینه‌های حمل‌و‌نقل می‌شود.

در مثال گفته شده، افرادی که این سیستمِ پیش‌بینی را تولید می‌کنند، متخصصان علم داده هستند. این افراد که به متخصصین یادگیری ماشین یا متخصص داده‌کاوی نیز شناخته می‌شوند، می‌توانند سیستم‌هایی با قابلیت پیش‌بینی و یادگیری ساخته و به قسمت‌های مختلف کسب‌و‌کارها کمک کنند. توجه کنید که عبارت‌های «داده‌کاوی» و «یادگیری ماشین» ممکن است به جای همدیگر استفاده شوند.

۱. یادگیری مبانی آمار و احتمالات

۲. یادگیری یک زبان برنامه‌نویسی

۳. یادگیری مبانی ماتریس‌ها و جبر خطی

۴. یادگیری مقدمات داده‌کاوی و یادگیری ماشین

۵. یادگیری مثال‌های متنوع و کاربردی در حوزه‌ی داده‌کاوی

۶. شبکه‌های عصبی و یادگیری عمیق

۷. یادگیری زیرحوزه‌های تخصصیِ علوم داده

۸. یادگیری الگوریتم‌ها و روش‌های پیشرفته مانند یادگیری تقویتی و روش‌های بهینه‌سازی کاربردی

در صورت تمایل از دیگر سایت ما بازدید فرمایید…

روبونیچ

سرور طلایی